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Abstract
By attaching five (complex) anticommuting property coordinates to the four
(real) commuting spacetime ones, it is possible to accommodate all the known
fundamental particles in their three generations. A general relativistic extension
to spacetime–property can be carried out such that the gauge fields find their
place in the space–property sector and the Higgs scalars in the property–
property sector. The full curvature is the sum of the gravitational curvature,
the gauge field Lagrangian and the Higgs field contribution; property curvature
may be linked to the cosmological term.

PACS numbers: 11.10.Kk, 11.30.Hv, 11.30.Pb, 12.10.−g

1. Property coordinates

The roots of a grand unified theory of everything can be traced to Einstein’s search for a
unification of gravity with electromagnetism. That quest led Einstein to consider spacetime
schemes in which additional coordinates were appended to three space coordinates and one
time coordinate, and to other initiatives in which the gravitational metric was no longer a
symmetric tensor. These concepts have their modern counterparts in respect of strings/branes
existing in enlarged spacetimes and in extensions which allow for non-commuting coordinates.
The last 30 years have spawned a lot of developments along these lines, together with the
incorporation of supersymmetry. Despite the intensity of these investigations and their great
beauty it must be admitted that there is no firm experimental evidence for their realization in
nature; all that we observe today is described by a three-generation standard model with its
multiplicity of parameters, with no evidence of spartners and no sign of higher dimensions. It
is a rather unfortunate conclusion and suggests that one must look at other ways of unifying
the natural forces, if that is our ultimate goal.

Over the last several years, with a number of collaborators [1], we have studied an
alternative approach which smacks of supersymmetry, but is somewhat different. The basic
idea is to append anticommuting coordinates ζ to spacetime x; unlike standard supersymmetry
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these coordinates do not carry spin but instead are Lorentz scalar—like the BRST fields
used to implement unitarity/gauge-fixing in quantized gauge theories. Although this may
seem somewhat unnatural we do not run into the problems of higher spins connected with
extended supersymmetries and this is a definite bonus. We are led to ascribe ‘property’ to
the various ζ . Due to anticommutativity, finite polynomials in ζ will lead to a finite set
of composite properties; this is in contrast to string-like excitations associated with bosonic
higher dimensions that produce an infinite number of modes. An intriguing aspect of such
a formulation is that fermionic coordinates effectively reduce [2] the number of dimensions,
so that one might contemplate a universe with zero net dimensions, like it was before the
big bang one presumes. The main lesson of supersymmetry, that provided one balances the
number of bosons and fermions (with equal source couplings), one can eliminate the worst of
the infinities of conventional field theory, thereby obtaining a naturally fine-tuned theory, is
another important facet.

These are the grounds which motivate the present paper. In section 2, we recapitulate the
reasons for attaching five complex property coordinates to spacetime (see also appendix B);
the principal consequences in relation to the fundamental particle spectrum are detailed there.
The really new work lies in section 3; it concerns the general relativistic extension of the work
so as to include all the force fields via an extended metric, where the separation describes the
difference in two events in location and in property. In order to make this generalization, it is
essential to get all the sign factors correct when constructing tensors and forming invariants
and the like over commuting and anticommuting variables. In an earlier paper, this was
patched somewhat haphazardly by including torsion, but here we do the analysis properly in
appendix A.

Because the algebra becomes very difficult when tackling five ζ in full nonlinear glory,
we shall outline the results for two simplified metrics which give a foretaste of expectations
for the complete case. Both these examples, explored in section 4, use just one complex ζ or
a real pair ξ, η. The first example corresponds to curved property but flat spacetime while the
second example incorporates electromagnetism and leaves the property sector flat. We find
that property curvature has an impact on the cosmological term, while the connection between
space and property leads quite naturally to the gravitational plus electromagnetic Lagrangian,
the latter following from other components of the full Riemann–Ricci tensor. In future work,
we intend to amalgamate all these ideas and use the entire ζ set.

2. Superfields

To gain some perspective on property, or flavour as it was once called, we start off with
an elementary example involving two anticommuting complex coordinates ζ 1, ζ 2 which are
appended to two-dimensional spacetime x0, x1. Let ζ 1 correspond to ‘electronicity’ and ζ 2 to
‘protonicity’, associated with charge and fermion number assignments Q(ζ 1, ζ 2) = (−1, 1)

and F(ζ 1, ζ 2) = (1, 1), respectively. Superfields are functions of x and ζ, ζ̄ and can be
expanded in ζ -polynomials. To avoid conflict with spin-statistics, one connects bosons with
even powers of ζ and fermions with odd powers of ζ . Therefore, let � be a real super-Bose
field describing bosons having the expansion

�(x, ζ, ζ̄ ) = A(x) + C̄(x)ζ 1ζ 2 + ζ̄2ζ̄1C(x) + ζ̄µDµ
ν(x)ζ ν + ζ̄2ζ̄1ζ

1ζ 2F(x). (1)

The coefficient fields A,C, F and the two of D are charge neutral, but the two of D are doubly
charged. We can regard C with their polynomials ζ 1ζ 2 as connoting (composite) atomicity
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(such as ep, ēp̄) while the two neutral D may be associated with mesonicity (such as eē, pp̄).
The doubly charged D, tied to ζ 1ζ̄ 2, ζ 2ζ̄ 1 (such as ep̄, pē) are more problematic because they
do not correspond to physically realized states. We can carry out the same construction for
fermions, of some chirality:

�(x, ζ, ζ̄ ) = B(c)
µ (x)ζµ + ζ̄µBµ(x) + ζ̄νζ

νE(c)
µ (x)ζµ + ζ̄νζ

ν ζ̄µEµ(x), (2)

where B1, B2 connote (e, p) states and E1, E2 might describe another generation of (e, p) or
excited versions. It should be stressed that because � is overall commuting, the component
fields B and E will anticommute; they carry spinor labels, like �, which have been deliberately
suppressed.

However by invoking duality (see appendix C for the detailed five ζ case), we can roughly
halve the number of components and eliminate some unwanted states. It is important to realize
that duality (×) has no effect on the charge and fermion number assignments. Therefore, its
imposition does not affect quantum numbers and can be used at will. (Also a double duality
operation coincides with the identity.) Specifically,

(1)× = (ζ̄νζ
ν)2/2!, (ζµ)× = ζµ(ζ̄νζ

ν), (ζ 1ζ 2)× = −ζ 1ζ 2

(ζ̄1ζ
1)× = ζ̄2ζ

2, (ζ̄1ζ
2)× = −ζ̄1ζ

2(ζ̄2ζ
1)× = −ζ̄2ζ

1
(3)

plus the conjugate relations (ζ ↔ ζ̄ ) and duals. By insisting that (�,�)× = (�,�) are both
self-dual we can satisfyingly dispose of the doubly charged states as well as C, relate F to A

and E to B. What survives are the self-dual

� = (A + Sζ̄µζµ)(1 + ζ̄νζ
ν)/2, � = (

ζ̄µBµ + B(c)
µ ζµ

)
(1 + ζ̄νζ

ν)/2.

A nice description of all this is to picture the expansion terms via a magic square, whose
rows and columns are labelled by the powers of ζ and ζ̄ as they occur in series (1) and (2).
Fermions fit into the odd label row/columns and the bosons in the even label row/columns;
conjugation corresponds to reflection about the main diagonal while duality corresponds to
reflection about the cross-diagonal. By placing the fermions and bosons in the same square
for convenience (but not implying that they have the same Lorentz transformation properties),
we can understand the diminution of the magic square as a consequence of cross-reflection:

 A B C

B(c) D E

C̄ E(c) F


 →self-duality


 A B 0

B(c) S B

0 B(c) A


 .

We can then go on to construct free and interaction Lagrangians for those superfields, where
the masses arise from expectation values s, a and so on. We shall not elaborate on this as the
procedure for doing this is very straightforward; anyway the more realistic case of five ζ will
be described in some detail presently. The main thrust of this section is that properties such as
flavours, colours, charges, generation number, etc can be built up compositely and that these
are finite. The resulting states which may be more numerous than one would wish can then be
culled by imposing duality constraints on the superfields which comprise them all.

The basic aim of the proposed scheme is to accommodate all known fundamental
particles simply and naturally without special pleading for symmetry groups and particular
representations or repetition number. Of course we are inspired by the monumental work
done on grand unified theories [3] in guiding us towards this end over the last few decades;
more specifically it will come as no surprise that one is directed to the most economical (and
therefore the most popular) proposals—those built upon SU(5) and SO(10) algebras. In
constructing the model, we would like to feature colour, charge, fermion number, flavour and
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generation when building up properties from the basic ζ . To be sure many prequark schemes
have been devised [4], but we wish to base our formulation entirely in terms of anticommuting
variables without worrying unduly about what particular dynamics favours the states seen in
nature.

Three ζ in the form of a charge Q = −1/3 colour triplet (down-type quark) fall well
short of our goal, for whereas ζ 1ζ 2ζ 3 might serve for a lepton there is no room for a neutrino
or up-type quark, and in any case where are all the other generations? In appendix B, we
prove that four ζ are also insufficient, so this leads us to the next case, N = 5 which,
coincidentally, accords with popular choice. A first quantized version of this model was
considered by Jarvis, Dondi and White [5]; here we shall examine a second quantized
version in greater depth. So let us quickly summarize the consequences of using property
coordinates possessing Q(ζ 0, ζ 1, ζ 2, ζ 3, ζ 4) = (0, 1/3, 1/3, 1/3,−1) and fermion number
F(ζ 0, ζ 1, ζ 2, ζ 3, ζ 4) = (1,−1/3,−1/3,−1/3, 1). (Incidentally, the sum of Q vanishes
which helps in anomaly cancellation.) We may ascribe ‘neutrinicity’ to ζ 0, ‘chromicity’ to
ζ i , where i = 1, 2, 3 are the three colours, and charged ‘leptonicity’ to ζ 4 in building up
properties/flavours.

As before, we follow through the property expansions of the (overall) Bose superfields to
see what emerges, and in particular we look out for repetitions of leptons, neutrinos, coloured
up-quarks and down-quarks:

�(x, ζ, ζ̄ ) =
∑

even r+r̄

(ζ̄ )r̄φ(r̄),(r)(ζ )r , (4)

�α(x, ζ, ζ̄ ) =
∑

odd r+r̄

(ζ̄ )r̄ψα(r̄),(r)(ζ )r . (5)

The number of components of fermionic ψ and bosonic φ each number 512 so they invite
pruning. A primary way to do this is to tie reflection of the magic 6 × 6 square about the main
diagonal to conjugation, or

ψ
(c)

α(r̄),(r) = ψα(r)(r̄), φ(r̄),(r) = φ
†
(r)(r̄).

But there are still too many states; so we apply a secondary condition that superfields are
self-dual in some way, corresponding to reflection about the cross-diagonal. (The dual
operation × does not affect quantum numbers.) Before implementing duality let us point
out some unwanted states hiding in the square, which duality might exorcise. The most
embarrassing are the combinations ζ̄0ζ̄4ζ

1ζ 2ζ 3 and ζ̄4ζ
0ζ 1ζ 2ζ 3 which possess F = 3 and

Q = 2, respectively—disposing of them would be a relief. Since by duality (see appendix C)

((ζ )r(ζ̄ )r̄ )× = (ζ )5−r̄ (ζ̄ )5−r ,

it pays to make the superfield � anti-selfdual: (�)× = −� or ψ(r̄)(r) = −ψ(5−r)(5−r̄). This
condition gets rid of the neutrino-like state in the upper-right corner too, ζ 0ζ 1ζ 2ζ 3ζ 4. We
assume that the same constraint can be imposed on the Bose superfield. One good thing is
that duality automatically provides a term containing the product (ζ̄µζµ)5/5! in field products,
so when integrating over the property coordinates

∫ ∏5
ν=1 dζ ν dζ̄ν we are guaranteed to get

nonzero answers by Berezin integration.
Many fermions survive the anti-selfduality constraint, including some that are colour

sextets. However, like everyone else, we presume that asymptotic states must be colour
singlets so we shall not fret about them; of more concern to us is to discover how many
quarks and leptons remain so as to be able to count repetitions or possible generations. We
shall therefore list below in a magic square all the relevant ones (* and - mean related by
conjugation or duality, respectively). They lie scattered in the odd sectors as shown:
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r\r̄ 0 1 2 3 4 5

0 L1, N1, D
c
1 Lc

5,D5, U1

1 * L2,3, N2,3,D
c
2,3, U2 L6, D6, U3

2 * L4, N4, D
c
4,7 –

3 * * –
4 * * –
5 * * *

It is apparent that there is room for three up-type quarks, eight down-type quarks plus
six charged leptons and four neutrinos, so we can certainly accommodate the known three
generations. The model predicts that there are some new down-quarks to be discovered and
perhaps other charged leptons and neutrinos. (It does not predict the masses of these fermions
until the Higgs expectation values are folded in through the Yukawa interactions.) We must
also point out that the independent polynomials ζ 0ζ 4ζ i and ζ 0ζ 4ζ i(ζ̄j ζ

j ) cannot be associated
with the normal up-quarks because they carry F = 5/3, if one sticks to the earlier fermion
number assignments. It is hard to know what to make of these predictions. Having additional
down-quarks without their up-quark counterparts does not accord with the standard family
picture; yet most persons would admit that the wide mass disparities within and across the
three generations appear to make a mockery of the standard groupings. It is not impossible
that new D-quarks may have some connection with the recently discovered pentaquarks states
such as 
+ ∼ uudds̄ and �−− ∼ ddssū, but until these resonances are firmly established the
subject is probably not worth debating.

Next, we turn to the scalar (Higgs) sector, which has the bosons sprinkled throughout
even sectors of the magic square. Again we meet a plethora of states which can be somewhat
reduced by invoking conjugation and duality. Of particular focus are the states which are
neutral (F = Q = 0) since their expectation values can impart masses to the fermions. Nine
such constants enter in principle:

• one φ(0)(0) = 〈φ〉
• one φ(0)(4) = 〈φ1234〉
• three φ(1)(1) = 〈

φ0
0 , φ

4
4 , φ

i
i

〉
• four φ(2)(2) = 〈

φ04
04 , φ

0k
0k , φ

4k
4k , φ

ij

ij

〉
,

others being related by duality. This is much fewer than the number of constants used in
the standard model so we anticipate that some useful mass relations will pan out after one
works out the mass values for the fermions—no easy task. To appreciate the severity of the
complications, take the Yukawa interactions between the U-components of the superfield �:

� ⊃ εijkζ̄0ζ̄i ζ̄jU1k(1 + ζ̄4ζ
4ζ̄lζ

l) + ζ̄0ζ
4ζ kU2k(1 + (ζ̄lζ

l)2/2)

+ εijkζ̄0ζ̄i ζ̄jU3k(ζ̄lζ
l − ζ̄4ζ

4) + conj,

and their interaction �̄α�α� with the classical part of the anti-selfdual Higgs superfield

〈�〉 = 〈φ〉[1 − (ζ̄µζµ)5/5!] + 〈φ1234〉[ζ 1ζ 2ζ 3ζ 4 − ζ̄1ζ̄2ζ̄3ζ̄4][1 − ζ̄0ζ
0]

+
〈
φ0

0

〉
[ζ̄0ζ

0 − ζ̄4ζ
4(ζ̄iζ

i)3/3!] +
〈
φ4

4

〉
[ζ̄4ζ

4 − ζ̄0ζ
0(ζ̄iζ

i)3/3!]

+
〈
φ04

04

〉
[ζ̄0ζ

0ζ̄4ζ
4 − (ζ̄iζ

i)3/3!] +
〈
φn

n

〉
[ζ̄kζ

k − ζ̄0ζ
0ζ̄4ζ

4ζ̄iζ
i ζ̄j ζ

j /2]

+
〈
φ0n

0n

〉
[ζ̄kζ

kζ̄0ζ
0 − ζ̄4ζ

4ζ̄iζ
i ζ̄j ζ

j ] +
〈
φ4n

4n

〉
[ζ̄kζ

kζ̄4ζ
4 − ζ̄0ζ

0ζ̄iζ
i ζ̄j ζ

j /2]

+
〈
φmn

mn

〉
[ζ̄iζ

i ζ̄j ζ
j /2 − ζ̄kζ

kζ̄0ζ
0ζ̄4ζ

4],
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ignoring normalization factors. We obtain the combinations

〈φ〉(Ū 1U1 + Ū 2U2 + Ū 3U3) + 〈φ1234〉(Ū 2U1 + Ū 1U2) +
〈
φ4

4

〉
(Ū 3U1 + Ū 1U3)

+
〈
φl

l

〉
(Ū 2U2 + Ū 3U1 + Ū 1U3) +

〈
φ4l

4l

〉
Ū 1U1 +

〈
φ

ij

ij

〉
Ū 2U2

that need to be diagonalized. The D-quarks and L,N involve other expectation values and
mixings which must also be unravelled to arrive at the final masses of physical states. This
is a nontrivial problem which is left for future research, but with only nine 〈φ〉, intriguing
consequences may unfold.

3. Gauge fields and general relativity with property

What is the role of gauge fields in this scenario? One could mimic the practice of
supersymmetry and construct some sort of vector superfield in which the gauge fields are
embedded, but we prefer to ape the Klein–Kaluza picture where gauge fields connect spacetime
with the extended coordinates: in our description these are anticommuting and connected with
property. Because the gauge fields are the carriers of forces connected with characteristic
charge or colour it is perfectly natural to use them as links between x and ζ . A general
relativistic framework comes to mind therefore in which the extended metric provides the
separation between two events in location and in type. We may imagine a generalized
coordinate XM = (xm, ζµ) = (xm, ξµ, ηµ) which combines position and property, such
that a generalized squared distance between two coordinates can be simply expressed in the
Hermitian form (here ζ̄ µ̄ ≡ ζ̄µ of the previous section as we want to use general relativistic
notation rather than particle physics notation):

ds2 = dXN dXMGMN = dxm dxnGmn + 2 dxm dζ νGνm + 2 dxm dζ̄ ν̄Gν̄m + 2 dζ̄ µ̄ dζ νGνµ̄.

(6)

The space–space components are to be associated with gravity, the space-property components
are to contain the gauge fields and the property–property components comprise the Higgs
scalars. Since ds2 is real, note that Gmn is bosonic and symmetric, Gµν is bosonic and
antisymmetric while Gmν and Gµ̄n are symmetric but fermionic. Thus, the ordering of labels
and fields is of crucial importance in ensuring the correctness of the algebra—the price to be
paid for merging bosonic x with fermionic ξ, η.

The gauge fields occur in the fermionic sectors Gnµ as we shall shortly see, but before
placing them, observe that a length scale 
 is obligatory when combining dimensionless ζ

to dimensionful x. Thus, consider a typical metric that arises from a vielbein EA
M having

components (
ea
m i
(Am)αµζµ

0 
δα
µ

)
,

producing the Hermitian form

ds2 = dxm dxngnm + 2
2
[
dζ̄ µ̄ − i dxmζ̄ κ̄ (Am)

µ̄
κ̄

]
δµ̄ν

[
dζ ν + i dxn(An)

ν
λζ

λ
]
, gmn = ea

meb
nηab.

(7)

The introduced scale 
 may or may not be associated with the Planck length (or Newton’s
constant); we leave this open for the moment. Note too that there is no comfortable place for
a gravitino in this picture as it would be tied with a fermionic field and does not sit well in the
same sector as A, unless one introduces an extra spin property quartet, which one is loth to do.
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The differential combination (dζ + idxnAnζ ), which is very much like the 5D K–K
scenario, suggests how gauge transformations come about. Consider the simple coordinate
change that mixes up the properties but leaves spacetime intact

x → x ′ = x, ζ → ζ ′ = exp[i
(x)]ζ, ζ̄ → ζ̄ ′ = ζ̄ exp[−i
(x)],

and look at the transformation property of Gmζ = i
2ζ̄Am (see appendix A):

Gmζ (X) = ∂X′R

∂xm

∂X′S

∂ζ
G′

SR(X′)(−1)[R] = ∂ζ ′

∂ζ
G′

ζm − ∂ζ̄ ′

∂xm

∂ζ ′

∂ζ
G′

ζ ζ̄
. (8)

Factoring out i
2 this leads to

ζ̄Am = ζ̄ ′A′
m exp[i
(x)] − iζ̄ (∂m exp[−i
(x)]) exp[i
(x)],

which, as one would wish, just corresponds to a (generally non-Abelian) gauge transformation

Am → A′
m = exp[i
(x)](Am + i∂m) exp[−i
(x)].

One may readily confirm that the other components of G are consistent with these changes.
This metric can be generalized further to include a Higgs scalar field by replacing the

vielbein component Eα
µ = 
δα

µ by 
χα
µ , whereupon the Higgs field resides in the property

metric components Gζζ̄ as �µ̄ν = χᾱ
µ̄δᾱβχβ

ν . As well one can contemplate making a
supergauge property transformation where 
 depends on ζ, ζ̄ too. Leaving aside these
elaborations and having satisfied ourselves that gauge variations arise painlessly in this
framework, we now turn to general relativistic aspects and curvatures in particular. To that
end and to avoid confusion between particle physics and Einstein notations we force ourselves
to write everything in terms of real coordinates ξ, η rather than complex ζ .

4. Curvature contributions in spacetime–property

A compact description of general relativity of spacetime-property is summarized in the
following appendix, with precise orderings and sign factors which it is perilous to ignore.
For the remainder of this section, we will avoid the intricacies that full SU(N) can cause,
by restricting the argument to a single complex ζ or real pair ξ, η; the only relevant group
becomes U(1) and there is but one gauge field. What follows is therefore a mere skeleton of
the full theory, but even so there are some very interesting features that show up.

Our first model is one which contains no gauge fields; the metric is curved in spacetime
and property separately, there being no inter-twining of the two sectors. We omit property
indices µ, ν, labelling them as ξ, η:

ds2 = dxm dxnGnm(x, ξ, η) + 2i dξ dη Gηξ (x, ξ, η)

≡ dxm dxngnm(x)(1 + if ξη) + 2i
2 dξ dη(1 + igξη), (9)

incorporates curvature in property through the ‘coupling constants’ f, g, aside from the
curvature due to the normal gravitational field gmn. (Inclusion of the ξη pieces is very
necessary to obtain non-zero results after property integration.)

The curvature components in spacetime Rjklm are just the usual ones multiplied by the
factor (1 + if ξη). The new ones are connected with property. We may calculate them from
first principles by spelling out the metric components
Gmn Gmξ Gmη

Gξn Gξξ Gξη

Gηn Gηξ Gηη


 =


gmn(1 + if ξη) 0 0

0 0 −i
2(1 + igξη)

0 i
2(1 + igξη) 0


 ,
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so
Glm Glξ Glη

Gξm Gξξ Gξη

Gηm Gηξ Gηη


 =


glm(1 − if ξη) 0 0

0 0 −i(1 − igξη)/
2

0 i(1 − igξη)/
2 0


 ,

and evaluating the connections.
The non-zero ones in the property sector are

�ξη
ξ = −�ηξ

ξ = igξ, �ξη
η = −�ηξ

η = igη

from which one may derive the curvature components. The relevant ones are

Rη
ξηη = −2ig(1 + igξη) = −Rξ

ηξξ , Rξ
ξξη = −ig(1 + igξη) = −Rη

ηηξ . (10)

We find that the Ricci tensor components Rηη, Rξξ = 0 (obvious from antisymmetry anyway)
and

Rξη = −Rηξ = 3ig(1 + igξη). (11)

Consequently, the total curvature is given by

R = GmnRnm + 2GηξRξη = R(g)(1 − if ξη) − 6g/
2. (12)

Since
√−G. . = −i
2√−g. .(1 + 2if ξη)(1 + igξη), we obtain an action

I ≡ 1

2
4

∫
R

√
G. . d4x dη dξ = 1

2κ2

∫
d4x

√−g. .[R(g) + λ],

where κ2 ≡ 8πGN = 
2/(f + g), R(g) is the standard gravitational curvature and
λ = 6g(2f + g)/
2(f + g) corresponds to a cosmological term. However, the scales of
the two parts are widely different suggesting that the coupling g is incredibly miniscule.
Hence, this model sheds no light on this perennial problem of physics; it merely indicates
that the cosmic contribution might conceivably be connected with the curvature of internal
property space.

Our second example leaves property space flat (in the η, ξ sector) but links that sector
with spacetime through the U(1) gauge field A. It is governed by the metric
Gmn Gmξ Gmη

Gξn Gξξ Gξη

Gηn Gηξ Gηη


 =


gmn(1 + if ξη) + 2i
2ξAmAnη i
2Amξ i
2Amη

i
2Anξ 0 −i
2

i
2Anη i
2 0


 ,

so
Glm Glξ Glη

Gξm Gξξ Gξη

Gηm Gηξ Gηη


 =


glm(1 − if ξη) Alη −Alξ

−Amη 0 −i(1/
2 − iξA.Aη)

Amξ i(1/
2 − iξA.Aη) 0


 .

Knowing full well that inclusion of gmn will produce generally covariant expressions, we can
simplify the analysis somewhat by going to flat Minkowski space first as there are then fewer
connections to worry about. With a bit of work we find (Fmn ≡ Am,n − An,m)

�ξη
ξ = �ξη

η = �ξη
k = 0,

�mξ
ξ = �mη

η = i
2AlFlmξη/2, �mξ
η = −�mη

ξ = Am

�mξ
l = i
2F l

mξ/2, �mη
l = i
2F l

mη/2

�mn
ξ = −AmAnξ − (Am,n + An,m)η/2,

�mn
η = −AmAnη + (Am,n + An,m)ξ/2,

�mn
k = i
2

(
AmFk

n + AnF
k
m

)
ξη.

(13)

The other Christoffel symbols are obtained through symmetry of indices.



Flavour of gravity 5183

Referring to equations (23)–(26), one computes

Rkm = Rl
klm − Rξ

kξm − Rη
kηm = −i
2(Ak,l + Al,k)F

l
mξη/2 + total derivative (14)

Rkξ = Rl
klξ + Rξ

kξξ + Rη
kηξ = i
2[F l

k,lξ/2 + AlFk,lη
]

+ total derivative (15)

Rkη = Rl
klη + Rξ

kξη + Rη
kηη = i
2

[
F l

k,lη/2 − AlFk,lξ
]

+ total derivative (16)

Rξη = 
4FklF
lkξη/4. (17)

The above expressions are readily covariantized by including the gravitational component
gmn(1 + if ξη). In that manner, we end up with the total curvature

R = GmnRnm + 2GmξRξm + 2GmηRηm + 2GηξRξη → R(g)(1 − ifgξη)

+ i
2gkmglnFklFnmξη/2, (18)

which is nothing more than the sum of the electromagnetic Lagrangian and the gravitational
curvature. We end up with∫

R
√−G. . d4x dη dξ/2
4 =

∫
d4x

√−g. .[R(g)/2κ2 − FklFkl/4], (19)

where κ2 = 
2/f = 8πGN . It is a nice feature of the formalism that gauge field Lagrangian
arises from space–property terms; in that respect it is quite similar to the standard K–K model
(which comes from the tie-up between ordinary spacetime and the fifth dimension).

At this point, one may contemplate some generalizations. First of all it is clear that one
may replace the two ‘couplings’ f and g by two distinct scalar fields (rather like dilatons),
whose expectation values are f, g. This ought to produce some new interactions and kinetic
terms involving them. Secondly, one may combine the two models above and arrive at a model
of QED plus gravity plus a cosmological contribution. Thirdly, one may extend the whole
enterprise to the five ζ in order to achieve a general relativistic picture of fundamental particles,
though it is still a mystery (as it is in the standard picture) why the weak SU(2) subgroup
should act solely on left-handed components; possibly a right–left symmetric scheme, with
spontaneous breaking of parity, might be a solution. Anyhow all of these scenarios are for
future investigation and there are plenty of lessons we can learn from researches in GUTs
over the last few decades. What is certain is that nonlinear transformations between space and
property, all the time respecting spin-statistics, are very rich and should repay study.

Appendix A. Extended general relativity

This appendix contains our notation and definitions and is crucial because our framework
turns out to be a compromise between the Einstein–Grossmann notation for general relativity
and the conventional particle physics up–down description of unitary group representations.
It is really important to get the factors and the order of the indices correct before we apply
the ideas to a particular metric; the signs are not obvious nor are they trivial. Essentially,
we are rederiving general relativity for systems which contain commuting and anticommuting
coordinates in quick time here.

Begin with a pair of real anticommuting coordinates ξ, η associated with an Sp(2) group.
Note that their product is Sp(2) invariant but anti-Hermitian since (ξη)† = η†ξ † = ηξ = −ξη.

For this pair it is convenient to define a complex coordinate and its adjoint via ζ = (ξ +
iη)/

√
2, ζ̄ = (ξ−iη)/

√
2, whence we see that the product ζ̄ ζ = −iηξ is properly Hermitian.

Also the O(2) coordinate rotation ξ → (ξ cos θ + η sin θ), η → (−ξ sin θ + η cos θ) gets
transcribed into a U(1) transformation ζ → e−iθ ζ, ζ̄ → ζ̄eiθ . As far as integration is
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concerned, we adopt the Berezin convention that
∫
(dζ dζ̄ )(ζ̄ ζ ) = 1. This process can be

continued with every Sp(2) pair, leading us to a set of N complex anticommuting parameters
labelled with up-indices like the usual spacetime ones: ζµ ≡ (ξµ + iηµ)/

√
2, µ = 1, . . . , N

inviting us to construct a U(N) group. (In the text, we have chosen N = 5 for good
reason.) If we wished to conform to the general relativistic convention we would have to
write the adjoint coordinates as (ζµ)† = ζ µ̄ again with up-indices (and in contradistinction
to the particle physics notation). Polynomials in ζ̄ and ζ lead to a particular set of U(N)
representations which are examined in the main body of the paper. However, it is safer and
certainly less confusing to adopt the real anticommuting coordinates particularly if we want to
enlarge spacetime coordinates xm by appending property coordinates; in that way we obtain a
super-coordinate XM = (xm, ξµ, ηµ). Within such a framework the natural symmetry group
involving the various ξ, η is O(2N).

We are now in a position to define a ‘spacetime–property’ distance which specifies not
just how far apart are located the events but how different they are in character. In constructing
this metrical separation we should be aware that differentiation is usually taken on the left, a
convention we are obliged to adhere to. The derivative rule must thereby be expressed in the
following order: dF(X) = dXM(∂F/∂XM) ≡ dXM∂MF , not with dX on the right, and for
products of functions the standard rule applies: d(FG . . .) = dFG + FdG + · · ·. A coordinate
transformation is thus described by dX′M = dXN(∂X′M/∂XN), and in that particular order.
With this understanding one forms a real ds2 = dXN dXMGMN . Next, we remind the reader
of the standard convention of ascribing a sign factor (−1)[F ] where [F ] = 0 when it refers to
a boson and [F ] = 1 when it refers to a fermion. Thus, the symmetry property of the metric
is GMN = (−1)[M][N]GNM . If we define the inverse by GLMGMN = δL

N then it is simple to
establish that GMN = (−1)[M]+[N]+[M][N]GNM .

Changing coordinate system from X to X′, we have to be exceedingly careful with signs
and orders of products, things we normally never care about; the correct transformation law is

GNM(X) =
(

∂X′R

∂XM

)(
∂X′S

∂XN

)
G′

SR(X′)(−1)[N]([R]+[M])

or conversely

G′
SR(X′) =

(
∂XM

∂X′R

)(
∂XN

∂X′S

)
GNM(X)(−1)[S]([R]+[M]).

Transformation laws for contravariant and covariant vectors read

V ′M(X′) = V R(X)

(
∂X′M

∂XR

)
and A′

M(X′) =
(

∂XR

∂X′M

)
AR(X),

in the order stated. Thus, the invariant contraction is

V ′M(X′)A′
M(X′) = V R(X)AR(X) = (−1)[R]AR(X)V R(X).

The inverse metric GMN can be used to raise and lower indices as well as forming invariants,
so for instance VR ≡ V SGSR and V ′RV ′SG′

SR = V MV NGNM . As usual these rules can be
extended to tensors, so suffice it to say that T LMN... will transform in the same way as a product
of contravariant vectors ALBMCN . . ., with a particular ordering of (∂X/∂X′) factors, etc.

The next issue is covariant differentiation but, before embarking on this, note that the
well-known convention which we are obliged to respect, namely AM,N ≡ (∂/∂XN)AM is
liable to cause complications because the lower case index appears to the right of the comma
but the derivative has been taken on the left! (It would have been better for our purposes if
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right differentiation were used but that convention is non-standard.) Nevertheless, we shall
stick to the usual requirement that AM;N must transform like TMN , namely

T ′
MN(X′) = (−1)[S]+[N])[R]

(
∂XR

∂X′M

) (
∂XS

∂X′N

)
TRS(X),

and see what it entails. A certain amount of work is needed to establish that

AM;N = (−1)[M][N]AM,N − AL�{MN,L}, (A.1)

where the connection is given by

�{MN,L} ≡ [(−1)([L]+[M])[N]GLM,N + (−1)[M][L]GLN,M − GMN,L]/2

= (−1)[M][N]�{NM,L}. (A.2)

We leave the reader to verify that this is the correct formula involving commuting and
anticommuting coordinates. Another useful way to write the covariant derivative is to define

�MN
K ≡ (−1)[L]([M]+[N])�{MN,L}GLK = (−1)[M][N]�NM

K,

whereupon

AM;N = (−1)[M][N]AM,N − �MN
LAL. (A.3)

Similarly, one can show that for double index tensors the correct differentiation rule is

TLM;N ≡ (−1)[N]([L]+[M])TLM,N − (−1)[M][N]�LN
KTKM − (−1)[L]([M]+[N]+[K])�MN

KTLK.

As a check on our work and sign factors it is very pleasing that covariant derivative of the
metric properly vanishes:

GLM;N ≡ (−1)[N]([L]+[M])GLM,N − (−1)[L][M]�{LN,M} − �{MN,L} ≡ 0.

We now move to the Riemann curvature tensor in its various guises. Using the above rules
and definitions, one can show that the difference between two successive covariant derivatives
is linear in the original vector and equals

AK;L;M − (−1)[L][M]AK;M;L ≡ (−1)[K]([L]+[M])RJ
KLMAJ ,

where

RJ
KLM ≡ (−1)[K][M]

(
�KM

J
)
,L

− (−1)[L]([K]+[M])
(
�KL

J
)
,M

+ (−1)[M]([K]+[L])+[K][L]�KM
N�NL

J − (−1)[K]([M]+[L])�KL
N�NM

J . (A.4)

Evidently, RJ
KLM = −(−1)[L][M]RJ

KML and, less obviously, the cyclical relation takes the
form

(−1)[K][L]RJ
KLM + (−1)[L][M]RJ

LMK + (−1)[M][K]RJ
MKL = 0. (A.5)

The fully covariant Riemann curvature tensor then emerges through the contraction RJKLM ≡
(−1)([J ]+[K])[L]RN

KLMGNJ and possesses the pleasing features:

RJKLM = −(−1)[L][M]RJKML = −(−1)[J ][K]RKJLM,

0 = (−1)[J ][L]RJKLM + (−1)[J ][M]RJLMK + (−1)[J ][K]RJMKL, (A.6)

RJKLM = (−1)([J ]+[K])([L]+[M])RLMJK.

It is then but a short step to get a suitable Ricci tensor and scalar curvature:

(−1)[K][M]RKM ≡ (−1)[J ]+[K][L]+[J ]([K]+[M])GLJ RJKLM

= (−1)[L]([K]+[L]+[M])RL
KLM = RMK, (A.7)

R ≡ GMKRKM.

We also anticipate that R components will obey some version of the Bianchi identity. In the
text, we evaluate these components for particular spacetime–property metrics.
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Appendix B. Four complex property coordinates are not enough

Here, we will explain why five property coordinates were chosen in the main body of the paper.
We take it as given that one must include three colour coordinates with the same charge, having
Q = 1/3, if strong interactions are to be incorporated, and that the model should produce three
particle generations. As well we suppose that the property of charge is additive and that other
properties are obtained by taking polynomials in the coordinates ζ . Another assumption is
that fermions are associated with odd powers of ζ . If we add just one extra ζ , we must choose
Q = 0 or Q = 1 in order to avoid outlandish charge values in the composite properties. Let
us examine both cases to see where they fail.

With Q(ζ 0, ζ 1, ζ 2, ζ 3) = (0, 1/3, 1/3, 1/3), we may identify the following states:
(N,Dc) ∼ (ζ 0, ζ i); i = 1, 2, 3 and (Lc, U) ∼ (ζ 1ζ 2ζ 3, ζ 0ζ iζ j ), where N,L,D,U stand
for generic neutrino, charged lepton, down-quark, up-quark states, respectively. We thus get
one generation without including the conjugate properties ζ̄ . Incorporating the latter, another
lepton emerges via the property combination ζ 1ζ 2ζ 3ζ 0ζ̄0, and although we can get at least
another two sets of N,U,D there is simply no place for a third charged lepton—a pity because
this model is really very economical.

With Q(ζ 1, ζ 2, ζ 3, ζ 4) = (1/3, 1/3, 1/3,−1), the situation is much worse. The
odd ζ sector produces two oppositely charged leptons and two sets of down-quarks:
(ζ i, ζ 4, ζ 1ζ 2ζ 3, ζ iζ j ζ 4) ∼ (Dc, L,D′, L′c); that is not a lot of good as we are missing
the neutrinos and up-quarks! Only by allowing even powers of ζ can we recover those missing
states, but that is at the price of incorrect statistics. We can of course postulate a new fermionic
supermultiplet which, in its even powers, contains other batches of fermions (the neutrinos
and up-quarks) but this doubled viewpoint is, to our mind, an ugly extension; it is far simpler
and more elegant to attach another ζ 0.

Thus, we suggest that the only proper way round these difficulties is to take five
complex (ζ 0, ζ 1, ζ 2, ζ 3, ζ 4) with charges (0, 1/3, 1/3, 1/3, −1). We ascribe fermion number
F = (1,−1/3,−1/3,−1/3, 1) to these properties to agree with standard choices, and will
again assume that F is additive like charge. (Of course, Q and F are reversed for the conjugate
ζ̄ .) This does produce an abundance of particles states which we are obliged to prune, as we
do in the next appendix, but the main point is that the extra number is circumscribed, unlike
models which rely upon excitations around another bosonic dimension.

Appendix C. Duality constraints

Having settled on five ζ one is naturally led to SU(5) or SO(10) classification groups. Here,
we concentrate on the former viewpoint and to that end we make use of totally antisymmetric
Levi-Civita tensors ερκλµν and ερκλµν with ε01234 ≡ 1 = ε01234 for raising and lowering indices
in the sense of particle physics. (In sections 3 and 4, we have rewritten ζ̄µ as ζ̄ µ̄ to conform
to general relativistic notation.) The key point is that the ‘dual’ of a polynomial, obtained via

[(ζ̄ )m(ζ )n]× ≡ ε...(ζ̄ )5−nε...(ζ )5−m

has precisely the same charge and fermion number as the original polynomial and this provides
a mechanism for cutting down the plethora of states. As two examples which define how the
index order is to be preserved and typify the recipe:

[1]× = ζ̄4ζ̄3ζ̄2ζ̄1ζ̄0ζ
0ζ 1ζ 2ζ 3ζ 4 = (ζ̄µζµ)5/5!

[ζ̄τ ζ
ρζ σ ]× ≡ 1

6ελµνρσ ζ̄λζ̄µζ̄ν .
1

24εταβγ δζ
αζ βζ γ ζ δ.

The rule ensures that double dual corresponds to the identity: [(ζ̄ )m(ζ )n]×× = (ζ̄ )m(ζ )n.
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We hereby list all the duals needed for the eventual pruning operation, considering just
odd polynomials which belong to fermions (although similar results can be obtained for the
bosonic even polynomials). It is sufficient to take 5 as the maximum property power of ζ plus
ζ̄ because duals populate the rest; also the conjugates can be determined from the set directly
by suitable interchange of ζ ↔ ζ̄ and will likewise be disregarded:

[ζ ν]× = ζ ν(ζ̄µζµ)4/4!

[ζ λζµζ ν]
× = −ζ λζµζ ν(ζ̄κζ

κ)2/2!

[ζ 0ζ 1ζ 2ζ 3ζ 4]
× = ζ 0ζ 1ζ 2ζ 3ζ 4

[(ζ̄0ζ
0)ζ 4]

× = (ζ̄1ζ
1ζ̄2ζ

2ζ̄3ζ
3)ζ 4

[ζ̄0ζ
1ζ 2]

× = −(ζ̄3ζ
3ζ̄4ζ

4)ζ̄0ζ
1ζ 2

[ζ̄0ζ
0ζ 1ζ 2ζ 3]

× = −ζ̄4ζ
4ζ 1ζ 2ζ 3

[ζ̄0ζ
1ζ 2ζ 3ζ 4]

× = ζ̄0ζ
1ζ 2ζ 3ζ 4

[ζ̄0ζ̄4ζ
1ζ 2ζ 3]

× = ζ̄0ζ̄4ζ
2ζ 3ζ 4

[ζ̄0ζ
0ζ̄3ζ

1ζ 2]
× = ζ̄4ζ

4ζ̄3ζ
1ζ 2

[ζ̄0ζ
0ζ̄4ζ

4ζ1]
× = ζ̄2ζ

2ζ̄3ζ
3ζ1.

Since a doubly charged lepton is associated with the combination ζ̄4ζ̄0ζ
1ζ 2ζ 3, the only way

to eliminate it is to invoke anti-selfduality.
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